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Received 24 June 1997, in final form 21 October 1997

Abstract. The scale-invariant properties of wave functions in finite samples of one-dimensional
random systems with correlated disorder are analysed. The random-dimer model and its
generalizations are considered and the wave functions are compared. Generalized entropic
localization lengths are introduced in order to characterize the states and compared with their
behaviour for exponential localization. An acceptable agreement is obtained; however, the
exponential form seems to be an oversimplification in the presence of correlated disorder.
According to our analysis, in the case of the random-dimer model and the two new models
the possibility of power-law localization cannot be ruled out.

1. Introduction

In a previous publication [1] we introduced a new form of information length in order to
characterize the shape of wave functions in finite one-dimensional (1D) disordered systems.
Using that definition we succeeded in showing that the states in the 1D Anderson model
with uncorrelated, on-site disorder do have, apart from oscillations, an overall exponential
shape. Such an exponential decay has been found for practically any strength of disorder
even in the case where the localization length exceeded the size of the system substantially.

The scaling properties of one-particle states in the presence of uncorrelated disorder in
1D and quasi-1D have been studied extensively both numerically and analytically [2–5].
The similar problem of the more realistic case of correlated disorder has been recently
considered in [6, 7]. In this paper we wish to present a scale-invariant study on a wider
family of correlated disorder in 1D and at the same time show how generalized localization
lengths may help to analyse the properties of the one-particle eigenstates.

To be more specific, the eigenvalue problem of an electron in a 1D disordered potential
can be given as

Ecm = εmcm + Vm,m+1cm+1+ Vm−1,mcm−1 (1)

wherecm is the amplitude of the probability for the electron to be at sitem andE is the
energy eigenvalue. In the simplest case studied in [1], the on-site potentialsεm are chosen
randomly from a box distribution of widthW centred around the origin, and the off-diagonal
hopping integrals are kept constant,Vm,m+1 = Vm−1,m = V0. The latter condition enables
us to fix the unit of the energy scale,V0 = 1. For this model there are rigorous results [8]
affirming complete exponential localization for any strength of disorder forinfinite systems,
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and in [1] we have proved numerically that the above statement holds forfinite systems, as
well.

The effect of correlated disorder introduced in (1) has attracted much attention recently.
These correlations may have originated from interactions of electrons with lattice vibrations
or e.g. in a more realistic representation of disorder incorporating the presence of chemical
bonding. The first models that included such correlations were therefore based on random
binary models [9–14]. These studies revealed the possibility that disorder correlations may
increase as well as decrease the localization length substantially.

For a special family of random binary alloys, correlation was introduced by assigning the
same energy level,εA or εB , to pairs of sites. This is called the random-binary-dimer model
(RBDM). This model was first introduced in [14] and it has been shown that under certain
conditions there are specialEc-values for which the state is delocalized and transparent, and
the number of extended states aroundEc is proportional to the square root of the length of a
finite sample. The localization length diverges at these energies [6, 15] and this is reflected
in the conduction properties of finite samples [16]. In a recent paper [7] Izrailevet al have
studied the scaling properties of the eigenstates in the RBDM and succeeded in showing
that the states approachingEc are described similarly to in the case of uncorrelated disorder
[1, 3].

There are other similar models formulated in the same spirit as the RBDM. A continuous
Kronig–Penney-type random-dimer model [17] exhibits an infinite number of resonances
with zero reflection constant. The existence of similar special states in a quasiperiodic
dimer model has also been found in [18].

Exponential localization, although with an enhanced localization length, has been seen
in another model where theεm-energies are drawn from a box distribution but they are
repeated forL consecutive sites [19]. Here it is possible to varyL; however, no special
energy with complete delocalization is present.

In this paper we present numerical results for two generalized versions (A, B) of the
RBDM that are related to both the model of finite correlation length in [19] and the original
model given by Dunlap, Kundu and Phillips [20]. Our results are compared to the ones
obtained by Izrailevet al [7].

In model A the on-site energies are drawn from a box distribution and assigned to
two consecutive sites at the same time: it may be called a general random-dimer model
(GRDM). This model is intermediate between the original Anderson model and the RBDM;
it is in fact the special case withL = 2 of the model studied in [19]. As has been shown
[19], within such models the energy band does not contain any special energies for which
complete delocalization may occur; however, correlations change the localization in much
the same direction as the RBDM.

Model B [20] on the other hand contains disorder in both the diagonal and the off-
diagonal part of (1):

εm = G

γ
V0(αm,m+1+ αm,m−1)

Vm,m±1 = V0

√
1+ α2

m,m±1− 2αm,m±1 cosδ

(2)

where the quantitiesαm,m±1 are chosen from a box distribution centred around the origin
with width W 6 2. This model is obtained by considering the coupling of electrons to the
vibrations of the underlying lattice represented by the random variablesαm,m±1 that introduce
a correlated disorder in both the on-site and the off-diagonal matrix elements (see [20] for
the details). The correlation is perfect if in (2)G = γ . The RBDM can be considered
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as a simplified version of this model. The special energies for which delocalization occurs
areEc = 2V0 cosδ. We choseV0 as the unit of energy here and varied the energy in the
vicinity of Ec for different values ofδ.

The solution of the Schrödinger equation (1), using the appropriate initial conditions
c0 = c1 = 1, is obtained by numerically iterating for a system ofN = 104 sites, and
the localization properties of the eigenstates are calculated using the charge distribution
Qm = |cm|2. Averaging is performed overM = 1000 samples.

2. Shape analysis

The shape of the charge distributionQm may be characterized using the inverse participation
number (IPN),D, and the Shannon entropy,H [1]:

D−1 =
∑
m

Q2
m and H = −

∑
m

Qm lnQm. (3)

Both of the parametersD and exp(H) give the number of sites effectively populated by the
state. Therefore a state extending over the whole system would haveD = N andH = lnN .
This means that one may introduce two parameters [7]

β1 = 1

N
exp(H̄ −Href ) and β2 = D̄/Dref (4)

where normalization with respect to both the system size and the case of the absence of
disorder has been performed. The latter is achieved by evaluating the valuesDref andHref
for the Bloch-wave solution of (1) withεm = 0 andVm,m±1 = V0 [7]. The overbar indicates
averaging over the samples at fixed energy and/or disorder. It is clear that both of these
quantities change from 1 to 0 as the disorder increases from 0 to∞; therefore in [7] they
have been used as scaling functions.

Another way of expressingβ1 and β2 (equation (6) below) can be obtained using
our previous definitions [1]. There, we used a size-independent form and pointed out
its relevance in a scale-independent shape analysis of the states. In [1] we calculated the
spatial filling factor,q, and the structural entropy,Sstr , of the individual eigenstates as

q = D/N and Sstr = H − lnD. (5)

These quantities obey the following inequalities: 0< q 6 1 and 06 Sstr 6 − ln q.
In the absence of disorder, the solution of (1) is a plane wave for whichq0 = 2/3 and
S0
str = ln 3− 1. These quantities can be related to the reference values in (4) as follows:
q0 = Dref /N and S0

str = Href − lnDref . Note thatq0 and S0
str are independent of the

system size whileDref andHref are not. Usingq andSstr , we may rewrite equations (4)
in the form

β1 = q̄ exp(S̄str )/β0 and β2 = q̄/q0 (6)

whereβ0 = q0 exp(S0
str ) ≈ 0.7357. We have to note that the quantitiesq0, S0

str and β0

that appear in (6) are obtained naturally from the solution of (1) for uncorrelated disorder,
which is a plane wave modulated by an exponentially decaying envelope, represented as a
product: cm ∼ exp(−|m − m0|/ξ) sin(km + δ) [1]. The very same conclusion was drawn
using a completely different method by Fyodorov and Mirlin [5] on the basis of results for
quasi-1D systems and for strictly 1D systems [21].

The main advantage of this reformulation is the application of the shape analysis
proposed originally in [22]. We have shown in [22] and in other publications [23, 24] that our
method is applicable for eigenstates composed as products of several simple forms, e.g. an
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oscillating plane wave and an envelope characterized by the scaleξ . In [23] our method
unambiguously showed the existence of power-law delocalized states near the mobility edge
of a 1D quasiperiodic system, where the bulk and the tail of the envelope played equal roles
in the analysis of the wave functions.

It was shown in [22] that the parametersq andSstr can be calculated for ideal charge
distributions analytically and that the functionSstr (q) is directly connected to the shape
of the distribution. Therefore the properties of a large set of wave functions obtained
numerically are to be compared to ideal curves in the parameter space(q, Sstr ), especially
when some control parameters of the system are varied, e.g. system size, strength of disorder
or energy. Similar relations betweenβ1 andβ2 may follow. For example, in the case of
exponential localization we obtain

β1(z) = exp(z)− 1

z exp(z)
exp

(
1− z

exp(z)− 1

)
(7)

and

β2(z) = 2

z

(
expz − 1

expz + 1

)
(8)

wherez = N/ξ with ξ the localization length.β1(z) andβ2(z) are monotonic functions of
z, and hence there is a relation betweenβ1 andβ2 and it is also directly connected to the
shape of the charge distribution. Note that similar analyticβ1(z) andβ2(z) functions can
be calculated for any other type of form function, e.g. for power-law decay.

3. Results and discussion

In [7] Izrailev et al fitted a very simple analytic form for the relation betweenβ1 andβ2 in
the case of the RBDM:

β2 = cβ1

1+ (c − 1)β1
(9)

with c ≈ 0.5488. We will show that this relation is a good approximation; however, it
fails to describe the states in both the localized and delocalized limits. We have to note
that a similarly simple scaling relation [3] for the case of uncorrelated disorder has been
exhaustively studied in [5] and the limitations of it shown.

In terms ofq andSstr , relation (9) reads

S̃str = − ln[c + (1− c)q̃] (10)

whereS̃str = S̄str − S0
str and q̃ = β2 = q̄/q0.

First of all, in the most extended limit,̃q → 1, S̃str (q̃) ≈ (1− q̃)/2 should hold [22].
In contrast, according to (10) we getS̃str (q̃) ≈ (1− c)(1− q̃).

Secondly, we plotted the results of our calculations together with the data obtained from
[7] in figure 1. The analytical forms obtained from equations (7) and (8) (solid curve) and
also the empirical relation (9) (dotted curve) are shown, as well. It is clear that (9) is
indeed a good approximation; however, the tendency is somewhat closer to equations (7)
and (8), which shows exponential localization on all length scales. The third relation (the
dashed curve) is the one derived assuming an envelope of the formcm ∼ m−3 instead of
an exponential form. The inset shows the deviation1β = β2 − β1 as a function ofβ1. In
the inset we see again that relation (9) is an acceptable fit to the data from [7]; however, in
this figure it is very hard to check its accuracy, especially for the localized and delocalized
limits. In figure 1 we have plotted our results for models A and B, as well. For model A
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Figure 1. The interrelation ofβ2 andβ1 for the generalized entropic lengths. The solid symbols
are from [7], while the crosses (DKPM) and open squares (GRDM) represent results from
the present calculation. The continuous curves represent analytical relations. In the inset, the
difference1β = β2 − β1 is given as a function ofβ1. See the details in the text.

we have varied the width of the box distribution betweenW = 10−4V0 andW = 104V0.
In the case of model B the parametersW = 1.9V0 (hereW is limited to 06 W < 2) and
δ = 0◦, 30◦, 60◦, 90◦ have been used. We can see that, at least in terms of the relation
connectingβ1 andβ2, neither of these models is very different from the behaviour of the
RBDM.

In order to investigate the similarities of and differences between the RBDM and the
models studied here (model A, the GRDM and model B, the DKPM), it is even more
transparent to plotSstr as a function of lnq. In figure 2 the localized regionq → 0 is
clearly not described by the relation (10) represented with a dotted line. It is also true
that for neither model do the states show a clear exponential localization in the ideal form
depicted by the continuous solid curve, as had been suggested in the previous paragraph.
However, the states in models A and B studied here come closer to doing this. This means
that in the strong-localization limit,q → 0, the states in the RBDM definitely have more
complex structure than those of models A and B. It is interesting to note that a similar
deviation has been obtained for the case of weak uncorrelated disorder in [21]. However,
in contrast to those given in [21] our results are nonperturbative. Furthermore, we have to
stress that in the present work, disorder correlations play an important role, yielding the
above-mentioned deviations from conventional exponential localization.
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Figure 2. The localization diagram for states in the RBDM, the GRDM and the DKPM.
Relation (10) (· · · · · ·) clearly deviates from the numerical results forq → 0. The symbols are
the same as for figure 1. In the inset the deviation ofSstr from its expected universal form
(1− q)/2 whenq → 1 is given. The dotted line is wrong in this limit, as well.

In figure 2 we have also plotted the functionSstr (q) for power-law localization with
different exponents. We observe that the RBDM is well described by an overall shape:
cm ∼ m−3 (the dashed line), while the GRDM and the DKPM are better described with
cm ∼ m−6 (the dashed–dotted line). This is apparently in contradiction with analytical
expressions for the Lyapunov exponent (the inverse localization length) which goes as
γ (E) ∼ (E − Ec)2 around the special energiesEc [6, 15]; however,γ should vanish for
the case of power-law localization [23, 24]. A possible resolution to this problem has
already been outlined in section 2—an exponential decay with some kind of rapidly varying
substructure superimposed on it can easily provide a shift from the curve corresponding to
the exponential decay to the one corresponding to power-law decay, as is seen in figure 2.
According to figure 2, relation (10) represents an unsuitable approximation, especially for
the strong-localization limit. Moreover, in the inset of figure 2 we see deviations for the
delocalized limit,q → 1, as well.

4. Conclusions

We have performed a shape analysis of the wave functions obtained from several one-
dimensional random models with correlated disorder. We have introduced a new definition
for the generalized localization lengths based on the inverse participation number and the
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Shannon entropy. We have applied the shape analysis introduced in [22].
It has been shown that the localization properties of the states in the RBDM are described

by (9) only approximately. On the other hand, equation (10) shows incorrect behaviour for
q → 1. Large deviations are obtained in the localized limitβ2→ 0. We have compared the
data from [7] with our simulations for the GRDM (model A) and the DKPM (model B). The
data show a clear deviation from simple exponential localization: the average localization
properties of the states for the RBDMresemblethose of a power-law shapecm ∼ m−3 and
in the case of models A and B those of a power-law shapecm ∼ m−6.

Acknowledgments

One of the authors (IV) is grateful for F Izrailev and co-workers for providing the data from
their calculations. Financial support from Országos Tudoḿanyos Kutat́asi Alap (OTKA),
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